Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in Staphylococcus aureus.

نویسندگان

  • Darrell D Marshall
  • Marat R Sadykov
  • Vinai C Thomas
  • Kenneth W Bayles
  • Robert Powers
چکیده

The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the Pta-AckA pathway causes cell death in Staphylococcus aureus.

During growth under conditions of glucose and oxygen excess, Staphylococcus aureus predominantly accumulates acetate in the culture medium, suggesting that the phosphotransacetylase-acetate kinase (Pta-AckA) pathway plays a crucial role in bacterial fitness. Previous studies demonstrated that these conditions also induce the S. aureus CidR regulon involved in the control of cell death. Interest...

متن کامل

Inhibition of AckA and Pta Genes Using Two Specific Antisense RNAs Reduced Acetate Accumulation in Batch Fermentation of E. coli BL21 (DE3)

Expression of foreign proteins in E. coli is normally inhibited by exogenous production of acetate. To overcomethis problem, various strategies have been proposed and tested to reduce the extent of acetate accumulation.Although these strategies can improve the outcome, the implementation of their proposed techniquesis not practical. Because to achieve optimal results, it requi...

متن کامل

Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli.

The nuoA-N gene cluster encodes a transmembrane NADH:ubiquinone oxidoreductase (NDH-I) responsible for coupling redox chemistry to proton-motive force generation. Interactions between nuo and the acetate-producing pathway encoded by ackA-pta were investigated by examining the metabolic patterns of several mutant strains under anaerobic growth conditions. In an ackA-pta strain, the flux to aceta...

متن کامل

Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway

Escherichia coli excretes acetate upon growth on fermentable sugars, but the regulation of this production remains elusive. Acetate excretion on excess glucose is thought to be an irreversible process. However, dynamic 13C-metabolic flux analysis revealed a strong bidirectional exchange of acetate between E. coli and its environment. The Pta-AckA pathway was found to be central for both flux di...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteome research

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2016